skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Züst, Tobias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Coevolution between plants and herbivores often involves escalation of defence‐offence strategies, but attack by multiple herbivores may obscure the match of plant defence to any one attacker. As herbivores often specialize on distinct plant parts, we hypothesized that defence‐offence interactions in coevolved systems may become physiologically and evolutionarily compartmentalized between plant tissues. We report that roots, leaves, flower buds and seeds of the tropical milkweed (Asclepias curassavica) show increasing concentrations of cardenolide toxins acropetally, with latex showing the highest concentration. In vitro assays of the physiological target of cardenolides, the Na+/K+–ATPase (hereafter “sodium pump”), of three specialized milkweed herbivores (root‐feedingTetraopes tetrophthalmus, leaf‐feedingDanaus plexippus, and seed‐feedingOncopeltus fasciatus) show that they are proportionally tolerant to the cardenolide concentrations of the tissues they eat. Indeed, molecular substitutions in the insects’ sodium pumps predicted their tolerance to toxins from their target tissues. Nonetheless, the relative inhibition of the sodium pumps of these specialists by the concentration versus composition (inhibition controlled for concentration, what we term “potency”) of cardenolides from their target versus nontarget plant tissues revealed different degrees of insect adaptation to tissue‐specific toxins. In addition, a trade‐off between toxin concentration and potency emerged across plant tissues, potentially reflecting coevolutionary history or plant physiological constraints. Our findings suggest that tissue‐specific coevolutionary dynamics may be proceeding between the plant and its specialized community of herbivores. This novel finding may be common in nature, contributing to ways in which coevolution proceeds in multispecies communities. 
    more » « less
  3. Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides. 
    more » « less